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The volume under review contains an edition and a partial translation of the “first
book” of a Byzantine “algorism” from 1436 (a “second book” deals with root extraction,
algebra in Italian abacus style, and geometry, a future description and study of which are
planned by Deschauer). “Algorisms” designate the European medieval and Renaissance
introductions to the use of Hindu-Arabic numerals. They fall into two main groups—
the normal Latin type, which only teaches the notation and the calculational algorithms
(henceforth “restricted”); and the vernacular type (primarily Italian), which after the
introduction of the new numerals and their use go on to present operations with “vulgar”
(not sexagesimal) fractions, and then deal with commercial arithmetic. The vernacular
type may skip the explanation of the calculational algorithms (e.g., Jacopo da Firenze),
or only present those for multiplication and division (e.g., Giovanni de’ Danti).

The treatise here edited contains a full presentation of the Hindu-Arabic numerals,
but it also teaches the arithmetic of vulgar fractions as well as select commercial topics;
it thus transgresses the dichotomy. It is one of rather few Byzantine treatises belonging
to one or the other kind. Firstly, there are two restricted algorisms: one, anonymous,
from 1252 [A. Allard, Rev. Hist. Textes 7 (1978), no. 1977, 57–107], the other, written
by Maximos Planudes some decades later, drawn from this and other sources [A. Allard,
Maxime Planude—Le grand calcul selon les Indiens, Univ. Catholique Louvain, Louvain-
La-Neuve, 1981]; in part derived from these are Rhabdas’ “Arithmetical letters” from

1341 [P. Tannery, in Mémoires scientifiques IV, 61–198, Édouard Privat, Toulouse,
1920].

Then there are, beyond the present one and its companion piece (about which
see below), two presentations of commercial arithmetic: one is from the early four-
teenth century [K. Vogel, Ein byzantinisches Rechenbuch des frühen 14. Jahrhun-

derts: Text, Übersetzung und Kommentar, Wiener Byzantinistische Studien, Band VI.
Österreichische Akademie der Wissenschaften. Kommission für Byzantinistik. Institut
für Byzantinistik der Universität Wien, In Kommission bei Hermann Böhlaus Nachf.,
Vienna, 1968; MR0250826 (40 #4058)] and contains only problems, no algorism, and
the other, written by Rabbi Elia Misrachi c. 1500 [G. Wertheim, Die Arithmetik des Elia
Misrachi, F. Vieweg u. Sohn, Braunschweig, 1896; JFM 27.0031.02], has a full algorism
with fractions and commercial arithmetic.
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The latter two are independent of each other, and also of the restricted algorisms.
The treatise edited by Deschauer appears to be independent of all of them. Thus, it
not only fills a lacuna in a “tradition”, it enhances our awareness of the richness of
the complete record (and of how much has probably been lost, warning against any
peremptory judgments).

Deschauer has edited a treatise contained in Cod. Vind. phil. gr. 65. This codex also
contains a problem collection [H. Hunger and K. Vogel, Ein byzantinisches Rechen-
buch des 15. Jahrhunderts, 100 Aufgaben aus dem Codex Vindobonensis Phil. Gr. 65.
Text, Übersetzung und Kommentar, mit 24 Tafeln. Österreichische Akademie der Wis-
senschaften, Philosophisch-Historische Klasse, Denkschriften, 78. Bd., 2. Abhandlung,
Hermann Böhlaus Nachf., Kommissionsverlag der Österreichischen Akademie der Wis-
senschaften in Wien, Graz, 1963; MR0155738 (27 #5672)], which, as Deschauer can
now convincingly argue (p. 12), was later than the treatise here edited, and written
elsewhere by a different scribe.

The part of the codex edited by Deschauer was already edited in 2006, but without
any translation and apparently for linguistically interested Byzantinists only. For any
historian of mathematics, familiar or unfamiliar with late medieval scholarly and ver-
nacular Greek, Deschauer’s edition with partial translation and ample commentary is
thus unavoidable.

The algorism part of the treatise is likely to be independent of the anonymous one
from 1252 and that of Planudes. It does not use the Hindu-Arabic shapes but represents
the digits 1 through 9 by the familiar “Milesian” letter symbolism, α = 1, β = 2, etc.
(Similarly, Misrachi sometimes used Hebrew letters—but not systematically.) Zero is
represented by an idiosyncratic invention, looking like an “h” rotated 180◦. Moreover,
the treatise introduces and uses decimal fractions. Deschauer supposes, with Hunger and
Vogel, that this was a borrowing from al-Kāš̄ı’s recent work, mediated by the Ottoman
Turks, who already occupied much of the former Byzantine area. (In the reviewer’s
opinion, an independent calque of the well-known sexagesimal fractions should not be
excluded—decimal fractions had already been invented by Immanuel Bonfils of Tarascon
around 1350 and were to be reinvented by Stevin, while place-value fractions with an
arbitrary factor of descent had been examined by Jordanus of Nemore earlier in the
thirteenth century.)

In general, the treatise is generously provided with (generally adequate) pedagogical
explanations. It does contain some blunders, but in general the mathematical level is
good. The problems presented are either linked to commercial practice or of recreational
type, but as pointed out by Deschauer (p. 353) the treatise as a whole is systematic in
character and no handbook for merchants or their clerks.

Beyond the links pointed out by Deschauer, one should be taken note of because of
its general significance. The rule of three is introduced by means of questions like these:
“if three become 4, how much will 5 become?” and “if eight times 8 would not become
64 but grew illicitly and became 100, how much would in the same ratio twelve times
12 become?” Deschauer sees this (p. 268) as an unusually theoretical approach built on
the classical theory of proportions. A reference to the Euclidean theory is indeed found
in many Arabic works, but not here. Instead, such counterfactual statements serve in
all Romance Ibero-Provencal commercial arithmetics until 1500 to introduce the rule
of three, while Fibonacci and Italian abacus books present them either as a distinct
topic or after a sequence of rule-of-three examples of goods versus money or one type of
coin versus another type; no Arabic work seems to have them. It remains possible, as
suggested by Deschauer (p. 351), that the Byzantine author built, in the main, on an
unknown Italian source; but he must have then combined even more freely with other
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material than suggested by Deschauer; other readers are likely to discover further links
that have escaped both Deschauer and the present reviewer. Jens Høyrup
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